MYELOID NEOPLASIA Effects of plerixafor in combination with BCR-ABL kinase inhibition in a murine model of CML
نویسندگان
چکیده
Sequestration in the bone marrow niche may allow leukemic stem cells to evade exposure to drugs. Because the CXCR4/ SDF-1 axis is an important mechanism of leukemic stem cell interaction with marrow stroma, we tested whether plerixafor, an antagonist of CXCR4, may dislodge chronic myeloid leukemia (CML) cells from the niche, sensitizing them to tyrosine kinase inhibitors. We initially treated mice with retrovirally induced CML-like disease with imatinib plus plerixafor. Plerixafor mobilized CXCR4 cells, but no difference was observed in leukemia burden, possibly reflecting insufficient disease control by imatinib. In a second series of experiments, we tested the combination of plerixafor with dasatinib in the same as well as an attenuated CML model. Despite much improved leukemia control, plerixafor failed to reduce leukemia burden over dasatinib alone. In addition, mice receiving plerixafor had an increased incidence of neurologic symptoms in association with CNS infiltration by BCR-ABL–expressing cells. We conclude that plerixafor is ineffective in reducing leukemia burden in this model but promotes CNS infiltration. Beneficial effects of combining tyrosine kinase inhibitors with plerixafor may be observed in a situation of minimal residual disease, but caution is warranted when disease control is incomplete. (Blood. 2012;120(13): 2658-2668)
منابع مشابه
Effects of plerixafor in combination with BCR-ABL kinase inhibition in a murine model of CML.
Sequestration in the bone marrow niche may allow leukemic stem cells to evade exposure to drugs. Because the CXCR4/SDF-1 axis is an important mechanism of leukemic stem cell interaction with marrow stroma, we tested whether plerixafor, an antagonist of CXCR4, may dislodge chronic myeloid leukemia (CML) cells from the niche, sensitizing them to tyrosine kinase inhibitors. We initially treated mi...
متن کاملDetection of abl/bcr Fusion Gene in Patients Affected by Chronic Myeloid Leukaemia by Dual-Colour Interphase Fluorescence in situ Hybridisation
Conventional cytogenetic is the standard technique for detection of Philadelphia (Ph) chromosome in chronic myeloid leukemia (CML). Evaluation of abelson murine leukemia/breakpoint cluster region (abl/bcr) fusion using dual-colour fluorescence in situ hybridization (D-FISH) is an alternative approach allowing rapid and reliable detection of the disease. We employed the technique of interphase D...
متن کاملEvaluation of the Effect of Curcumin and Imatinib on BCR-ABL Expression Gene in Chronic Human k562 Cells
Background and Aims: Detection of overexpression in tumor-inhibiting genes provides valuable information for leukemia diagnosis and prognosis. Chronic myeloid leukemia (CML) is a stem cell disorder determined by a well-defined genetic anomaly involving BCR-ABL translocation in the Philadelphia chromosome. Curcumin is a chemo-preventive agent for the primary cancer targets, such as the breast, p...
متن کاملFrequency of BCR-ABL Fusion Transcripts in Iranian Azeri Turkish patients with Chronic Myeloid Leukemia
Background: The Philadelphia chromosome (Ph) characterized by t (9; 22) (q34; q11.2) is a reciprocal translocation giving rise to a chimeric BCR-ABL fusion gene. Incidence of Ph chromosome is over 98% in Patients with Chronic Myeloid Leukemia (CML) and around 20% in acute lymphoblastic leukemia (ALL). The finding of this fusion gene is essential for diagnosis of CML by detection of various fusi...
متن کاملBCR-ABL fusion genes and laboratory findings in patients with chronic myeloid leukemia in northeast Iran
Background: A specific chromosomal abnormality, the Philadelphia chromosome (BCR-ABL fusion), is present in all patients with chronic myeloid leukemia (CML). The b2a2 and b3a2 fusion mRNAs encode p210 fusion protein p210 and e1a2 encode p190. The aim of this study was to evaluate the frequency of BCR-ABL fusion transcript variants in Northeast of Iranian CML patients and to compare the laborato...
متن کامل